Project Description¶

An essential part of business is planning for the future and ensuring the business survives changing market conditions. In this project, we explored data from BusinessFinancing.co.uk on the world's oldest businesses. We answered some questions about historic businesses.

In [20]:
# import the required libraries
import pandas as pd
import matplotlib.pyplot as plt
In [44]:
# load the datasets
business = pd.read_csv('businesses.csv')
country = pd.read_csv('countries.csv')
category = pd.read_csv('categories.csv')
In [45]:
# The data came with index column, therefore we are dropping it to avoid repetition in columns
business = business.drop('index', axis =1)
country = country.drop('index', axis =1)
category = category.drop('index', axis =1)
In [46]:
# viewing the first few rows of datasets
business.head()
Out[46]:
business year_founded category_code country_code
0 Hamoud Boualem 1878 CAT11 DZA
1 Communauté Électrique du Bénin 1968 CAT10 BEN
2 Botswana Meat Commission 1965 CAT1 BWA
3 Air Burkina 1967 CAT2 BFA
4 Brarudi 1955 CAT9 BDI
In [47]:
country.head()
Out[47]:
country_code country continent
0 AFG Afghanistan Asia
1 AGO Angola Africa
2 ALB Albania Europe
3 AND Andorra Europe
4 ARE United Arab Emirates Asia
In [48]:
category.head()
Out[48]:
category_code category
0 CAT1 Agriculture
1 CAT2 Aviation & Transport
2 CAT3 Banking & Finance
3 CAT4 Cafés, Restaurants & Bars
4 CAT5 Conglomerate

The dataset was already in the fine form, therefore we do not need to pre process the datasets. We wil begin exploring. First we will explore the oldest business on every continent¶

In [49]:
# merge the country and business data
business_country = business.merge(country, on = 'country_code')
business_continent = business_country.groupby('continent').agg({'year_founded' : 'min'})
business_continent
Out[49]:
year_founded
continent
Africa 1772
Asia 578
Europe 803
North America 1534
Oceania 1809
South America 1565

We will now go in more depth to see the oldest business on each continent, country and the year it was founded¶

In [50]:
old_business_continent_country = business_country.merge(business_continent, on = ['continent', 'year_founded'])
old_business_continent_country[['business', 'continent', 'country', 'year_founded']]
Out[50]:
business continent country year_founded
0 Mauritius Post Africa Mauritius 1772
1 Kongō Gumi Asia Japan 578
2 St. Peter Stifts Kulinarium Europe Austria 803
3 La Casa de Moneda de México North America Mexico 1534
4 Casa Nacional de Moneda South America Peru 1565
5 Australia Post Oceania Australia 1809

Exploring how many countries per continent do not have data on oldest business¶

In [55]:
all_countries = business.merge(country, on='country_code', how='outer', indicator=True)
missing_countries = all_countries[all_countries['_merge'] != 'both']
missing_countries.groupby('continent').agg({'country':'count'})
Out[55]:
country
continent
Africa 3
Asia 7
Europe 2
North America 6
Oceania 11
South America 3

What is the oldest business category on each continent and which year was it founded in?¶

In [70]:
business_category = business.merge(category, on = 'category_code')
business_category_country =business_category.merge(country, on='country_code' ) 
business_category_country.groupby(['continent', 'category']).agg({'year_founded': 'min'})
Out[70]:
year_founded
continent category
Africa Agriculture 1947
Aviation & Transport 1854
Banking & Finance 1892
Distillers, Vintners, & Breweries 1933
Energy 1968
Food & Beverages 1878
Manufacturing & Production 1820
Media 1943
Mining 1962
Postal Service 1772
Asia Agriculture 1930
Aviation & Transport 1858
Banking & Finance 1830
Cafés, Restaurants & Bars 1153
Conglomerate 1841
Construction 578
Defense 1808
Distillers, Vintners, & Breweries 1853
Energy 1928
Food & Beverages 1820
Manufacturing & Production 1736
Media 1931
Mining 1913
Postal Service 1800
Retail 1883
Telecommunications 1885
Tourism & Hotels 1584
Europe Agriculture 1218
Banking & Finance 1606
Cafés, Restaurants & Bars 803
Consumer Goods 1649
Defense 1878
Distillers, Vintners, & Breweries 862
Manufacturing & Production 864
Media 1999
Medical 1422
Mining 1248
Postal Service 1520
Telecommunications 1912
Tourism & Hotels 1230
North America Agriculture 1638
Aviation & Transport 1870
Banking & Finance 1891
Distillers, Vintners, & Breweries 1703
Food & Beverages 1920
Manufacturing & Production 1534
Media 1909
Retail 1670
Tourism & Hotels 1770
Oceania Banking & Finance 1861
Postal Service 1809
South America Banking & Finance 1565
Cafés, Restaurants & Bars 1877
Defense 1811
Food & Beverages 1660
Manufacturing & Production 1621

By following the more or less similar steps as perfomed above, we can explore more and answer many questions related to old businesses. Thank you!¶